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A B S T R A C T

A data-driven model that predicatively generates photorealistic RGB images of dough surface browning is
proposed. This model was validated in a practical application using a CO2 laser dough browning pipeline, thus
confirming that it can be employed to characterize visual appearance of browned samples, such as surface color
and patterns. A supervised deep generative network takes laser speed, laser energy flux, and dough moisture as
an input and outputs an image (of 64 64× pixel size) of laser-browned dough. Image generation is achieved by
nonlinearly interpolating high-dimensional training data. The proposed prediction framework contributes to the
development of computer-aided design (CAD) software for food processing techniques by creating more accurate
photorealistic models.

1. Introduction

Visualization tools—what designers use to communicate complex
concepts through rendered images—are of preeminent importance
when new food products are designed. Modeling software that can
produce more accurate visuals of processed food will aid in the devel-
opment of this technology by creating more compelling and realistic
models. The aim of this paper is to create a robust model for generating
laser-induced dough browning.

Products that undergo Maillard browning (Martins et al., 2000),
such as baked bread, demonstrate rich surface color and pattern, which
are key characteristics for quality control and consumer appeal (Purlis
and Salvadori, 2007). In extant studies, the surface color of browned
products is typically modeled by applying (1) a physics-based method
(Purlis and Salvadori, 2009; Zanoni et al., 1995; Zhang and Datta,
2006) or (2) a data-driven (machine learning, observation-based) ap-
proach (Purlis and Salvadori, 2007).

When the physics-based method is adopted, surface color is usually
characterized using scalar values, such as browning index and surface
lightness. First-order kinetics are subsequently employed to model this
scalar value as a function of bread surface temperature. Coupled heat
and mass transfer equations are solved numerically to calculate surface
temperature, which serves as the browning index indicator. This
method is not only computationally expensive, but also requires tuning
of a large number of parameters (Zhang and Datta, 2006).

Purlis and Salvadori (2007) took a data-driven approach to char-
acterize surface color of bread browning as a function of baking tem-
perature. The authors established a linear relationship between total
color change and weight based on the best fit to the experimentally
obtained data. Physics-based and data-driven methods have both been
shown to qualitatively predict a browning behavior trend, both spa-
tially and temporally, albeit with limited accuracy (Purlis and
Salvadori, 2007; Zanoni et al., 1995). In particular, no attempt has been
made to obtain full surface color (either RGB or L a b* * *, i.e., not just a
scalar value) using either of these methods.

Contrary to the abundant research pertaining to dough surface color
modeling, surface pattern modeling has been a subject of limited stu-
dies. Purlis and Salvadori (2009) observed that proofed dough under
browning results in a wrinkled surface, which becomes smooth after a
few minutes. However, no attempt was made by these authors to elu-
cidate the relationship between the browned product smoothness and
the baking setup or dough recipe.

In this work, dough surface pattern modeling was driven by an
empirical observation that surface pattern is automatically captured if
surface color is modeled in a full color space, instead of the over-
simplified scalar browning index or brightness. In other words, if the
images generated by a computational model can be as realistic as those
captured by camera, pattern information can be easily obtained from
the generated images.

While surface color in full color space can be modeled using a
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physics-based method, generating photorealistic color using this
method is challenging due to the complexity of the browning phe-
nomenon (Martins et al., 2000; Purlis and Salvadori, 2009). It is likely
that, owing to these difficulties, the authors of the existing surface color
models have resorted to color modeling by simply linearizing the re-
lationship between color and temperature and using only a scalar value
for color description.

Data-driven methods overcome the need to model intermediate
physical and chemical processes (Sablani, 2008) because they are ap-
plied directly to input and output data. This is particularly useful when
the underlying physical process is not well understood, as is the case
with browning. For example, when browning models are based on a
data-driven method, they can be applied directly on photographs of the
browned sample to construct a correspondence between the output
photograph and the input comprising of browning apparatus para-
meters.

Data-driven methods are also much faster compared to physics-
based methods as, once the machine learning model is trained, it gen-
erates a prediction in real time with low computational cost. On the
contrary, whenever a different material property or boundary condition
is needed, physics-based methods have to re-solve multiple governing
differential equations using numerical approximations. The computa-
tional cost can thus be prohibitive, as the processing can take minutes,
hours, and even days (Purlis and Salvadori, 2009; Zhang and Datta,
2006).

Data-driven methods have limitations as well. Because the under-
lying physical and chemical processes are unknown, this method is
often considered a black box, the accuracy of which can only be tested
empirically. Since data-driven models are trained on a specific dataset,
attention is needed to prevent overfitting and the ability to extrapolate
is limited.

In light of the aforementioned benefits and drawbacks, the aim of
the present study was exploring data-driven method's potential to
predict high-resolution, full-color, photorealistic images of browned
products, which capture both surface color and pattern.

In particular, in this work, a deep learning approach was employed
to model photorealistic browned dough. In the past decade, deep
learning has become a state-of-the-art machine learning method with
extensive AI applications, especially in object recognition (LeCun et al.,
2015). In a typical object recognition problem, an RGB image at pixel
level would serve as input for classifying different objects in the image.
This strategy has been employed for recognizing human faces in pho-
tographs (LeCun et al., 2015) and detecting diseased plants in maize
field images (DeChant et al., 2017), among other applications.

In food science, deep learning has been used to assess puréed food
concentrations (Pfisterer et al., 2018) and to classify food and drink
images (Mezgec and Koroušić Seljak, 2017). Shallow artificial neural
network, as the predecessor of deep learning, has been widely used in
food science for food classification, quality prediction, and segmenta-
tion of food images (Du and Sun, 2006).

Deep learning is also suitable for generative modeling (Goodfellow
et al., 2016). As shown in Fig. 2, generative modeling solves the inverse
problem of object recognition, where the object label is an input and the
RGB image at pixel level is the output. Dosovitskiy et al. (2015) de-
signed a deep learning model that can be applied to generate photo-
realistic images of chairs from high-level descriptions (e.g., chair type
and the viewpoint position). The model developed as a part of the
present study mirrors the overall structure of the method proposed by
Dosovitskiy et al. (2015). Specifically, high-level descriptions of
browning apparatus conditions and dough sample serve as model in-
puts, generating an RGB image of browned dough as the output. To the
best of the authors’ knowledge, this is the first attempt to apply deep
generative networks to food science. A further contribution of the
present study stems from modeling images of browned products at a
photorealistic, per-pixel RGB level, for the first time.

Physics-based CAD is increasingly being explored in food science

research (Datta, 2016; Halder et al., 2011). The label-to-image
browning prediction framework proposed in this work thus contributes
to this effort by enabling further advancements in the CAD software
aimed specifically at browning. Because the framework can yield pho-
torealistic browned dough surfaces, it significantly improves CAD's
ability to visualize final cooked dough samples prior to processing,
while providing a more lifelike rendering for the user (Fig. 1). Such a
visualization ability, while important for CAD applications, is im-
possible to achieve by applying previously discussed modeling methods
that only characterize surface color with a single scalar value.

To test the robustness of the proposed label-to-image browning
model, it was applied to a laser-induced browning pipeline. Laser-
browning is a novel cooking technique that utilizes heat produced by a
laser beam to induce browning in dough products (Blutinger et al.,
Under second round review). Similar to oven baking, as dough is heated
by the laser beam, chemical reactions occur in the food product, giving
rise to Maillard browning and caramelization (Blutinger et al., Under
second round review). According to Martins et al. (2000), the non-en-
zymatic browning degree due to the Maillard reaction is related to
aroma, taste, color, and nutritional value of cooked food products.
Thus, it is important to precisely control the conditions that give rise to
the final laser-cooked dough products, as this aids in achieving optimal
browning patterns and eliminating any potentially harmful byproducts
(Mottram et al., 2002).

Lasers differ from conventional heating methods in that they can
provide high-resolution and controlled targeting of heat (Blutinger
et al., 2018). These characteristics make them particularly appropriate
for three-dimensional (3D) food printing application, which is a type of
additive manufacturing (AM) technique that creates 3D edible objects
by layering precisely defined two-dimensional (2D) slices of food ma-
terial. Accurate targeting of heat is required in such applications due to
the machine's ability to combine foods at a much closer level and the
higher degree of customization that lasers offer. Additionally, the
ability to precisely control the laser speed, power, flux, and cooking
pattern renders this technique adaptable to different food materials
(Blutinger et al., 2018). Due to the number of variables that need to be
parameterized, laser browning is an ideal candidate for testing the
proposed data-driven method's ability to model the browned dough
characteristics.

2. Materials and methods

As illustrated in Fig. 3, the visual modeling pipeline is threefold: (1)
experimental data must first be obtained (sections 2.1–2.3), (2) a deep
generative network is then trained and tested using this data (sections
2.4–2.6), and (3) images generated by the trained and validated net-
work are rendered to give a 3D photorealistic view (section 2.7).

2.1. Sample preparation

All-purpose flour (Gold Medal, General Mills, Minneapolis, USA)
was used for the dough mixture. Five dough mixtures were prepared,
each with a different flour to water ratio. The dough only consisted of
flour and water. Moisture levels in the dough samples ranged from 50%
to 70% water on a flour weight basis, in 5% increments (i.e., 50%, 55%,
60%, 65%, and 70%). Dough was mixed in a food processor (FP-8FR
series, Cuisinart, East Windsor, USA) for 60 s at low speed under am-
bient conditions (23∘C) and was left to rest for 15min at 4∘C. Dough
samples were flattened into 2mm ( 0.1± mm) thick rectangles prior to
laser heating.

2.2. Laser apparatus

A CO2 laser cutter and engraver (Nova 35, Thunder Laser
Equipment Co., Ltd., Dongguan, China) was used to heat the dough. The
laser operates at an infrared (IR) wavelength of 10.6 μm with a
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maximum operating power of 80W. RD Works V.8 software was used to
adjust power, speed, and raster pattern. An “x-swing” scan mode
(Fig. 4D) was employed in all experiments, with a 0.1 mm interval
between neighboring scan passes. The software allowed for a maximum
laser speed of 1000mm s−1, and a power range of W. Furthermore,
according to the manufacturer data, the power consumption of the
80W laser is 1400W.

2.2.1. Browning the dough
Square raster cooking patterns (Fig. 4D) were laser-etched onto the

dough while speed, laser energy flux, and dough moisture were ad-
justed for individual tests. Laser power was maintained at 8W for all
tests. Speed was controlled via the RD Works software, while energy
flux was manually adjusted between tests by moving the laser bed (thus
modifying the z-height). Since the Nova 35 laser cutter beam is not
collimated, z-heights exceeding the focal length (4.5 mm) result in a
lower laser energy flux, as the beam starts to diverge and increase in
size. Each heated raster pattern spanned a 0.25 in × 0.5 in dough sur-
face area. Based on the camera's pixel density, this area was sufficient to
capture a browning pattern from the laser-heating process.

2.3. Data acquisition

Images were taken using a digital single-lens reflex camera (EOS
Rebel T5i, Canon, Tokyo, Japan). Consistent lighting was ensured for all
images. Placement of the light source was strategically placed at an

oblique angle above the setup to minimize dough surface reflectance
into the camera lens and accentuate surface patterns. Samples were
imaged within minutes of laser browning the dough as to ensure surface
quality and consistency. Additionally, all images were captured con-
secutively throughout the course of the day, so that the setup was not
altered in any way. The captured images were post-processed and
cropped to a 64 64× pixel size using MATLAB (Fig. 4A, B, & C). Ex-
perimentally obtained data with different dough moisture (w, %), laser
height (z, mm), and laser speed (s, mm s−1) is shown in Fig. 5.

2.4. Splitting training data and testing data

In order to demonstrate the network's robustness, the experimental
data was separated into a training set and a testing set—not involved in
training but is used for network validation—based on the following
criteria:

• Dough moisture value (w): Data pertaining to w 50%= , 60%, and
70% was assigned to the training set (108 images), whereas that
pertaining to w 55%= and 65% was used in testing (78 images). This
separation permitted testing the network's ability to interpolate
between the data points in the training dataset.

• Laser height (z): In this case, data with alternate z values was as-
signed to the training (96 images) and the testing datasets (90
images), respectively.

• Laser speed (s): Data with alternate s values was assigned to the

Fig. 1. Rendered illustration of laser-browned crackers. The visual appearance of these crackers is fully predicted by the trained deep generative network.

Fig. 2. Object recognition (label what is in the picture) vs. generative modeling (generate a picture from the label.).
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training (93 images) and the testing datasets (93 images), respec-
tively.

• Checkerboard splitting: Instead of focusing on w, z, and s separately,
alternate data points in the dataset as a whole were assigned to the
training (93 images) and the testing datasets (93 images), respec-
tively.

2.5. Data preprocessing for training

To use the hyperbolic tangent operator (tanh) as an activation
function for the network, every RGB channel, which has a permissible
intensity range from 0 to 255, of every pixel was normalized to the
[ 1, 1]− + range. To enhance the numerical conditioning for the

Fig. 3. Visual modeling pipeline.

Fig. 4. Method of data acquisition. A) Camera setup to capture laser-browned dough. B) Sample image. C) 64 64× pixel size square was cropped from each image to
be used for the network. D) Raster scan cooking pattern of the laser.

Fig. 5. Experimental Data. 186 unique images of laser-browned dough were obtained by varying dough moisture, laser height, and laser speed.
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optimization solver during training, input variables (dough moisture,
laser height, and laser speed) from the training dataset were standar-
dized to have zero mean and unit standard deviation. No testing data
was involved during this preprocessing. In the testing stage, we applied
the same preprocessing algorithm to the testing dataset using mean and
standard deviation of the training data.

2.6. Deep learning model description

The aim of the present investigation was to train a neural network that
generates photorealistic RGB images of laser-browned dough from three
scalar inputs, [w, z, s]. As discussed in Fig. 4 and section 2.4, w denotes the
dough moisture value (water content), z represents laser height (directly
affecting laser energy flux), and s indicates laser speed. RGB was chosen
for the target image output format, since it matches the direct output
format of the camera (L a b* * * would also be appropriate for characterizing
the ground truth images). For simplicity, henceforth, three scalar numbers
listed in square brackets indicate a set of w, z, and s values. For example,
[55, 26, 150], denotes w=55%, z=26 mm, s=150 mms−1.

2.6.1. Data augmentation
We applied data augmentation to the training dataset to reduce the

likelihood of overfitting during training and increase the network's
ability to generalize (Wang and Perez, 2017).

Specifically, the training data was augmented by introducing two
random scalars θx , artificial horizontal translation, and θy, artificial
vertical translation (Fig. 6). These two randomized scalars were con-
catenated to the original three input variables, [w, z, s], to form a new
input vector, [w, z, s, θx, θy].

Each training image was augmented via 20 artificial random
translations, effectively increasing the size of the training dataset by a
factor of 20. Thus, the training dataset grew from 108 images to 2160
images in the case when training and testing data are separated based
on dough moisture value (w); from 96 images to 1920 images when
data was separated based on laser height (z); from 93 images to 1860
images when data was separated based on laser speed (s); and from 93
images to 1860 images when data was split based on the checkerboard
pattern.

2.6.2. Network architecture
Convolutional neural networks (CNNs), a major reason behind the

robust performance of object recognition problems, are optimized for
processing data presented in the form of multiple arrays, such as RGB
images (LeCun et al., 2015). In contrast to object recognition, deconvo-
lution networks—used for generative modeling—can produce RGB
images from label parameters (w, z, and s) (Dumoulin and Visin, 2016;
Zeiler et al., 2010). A deconvolution network architecture (Fig. 7a) si-
milar to that proposed by Dosovitskiy et al. (2015) was adopted in the
present study to generate photorealistic laser-browned dough images.

The input to the network are physical parameters [w, z, s] and the
horizontal and vertical data augmentation parameters [θx, θy]. Through
several fully connected layers and multiple deconvolution layers, the
network gradually increases the dimension of the output until finally a
64 64× image of three channels (RGB image) was obtained. The gen-
erated image was then compared with the ground truth image to
evaluate the loss function during training. The loss function measures
the average difference per RGB channel per pixel between the gener-
ated image and the ground truth image.

Although, in this particular setup, the output image resolution was
64 64× , deconvolution layers can be added or removed to generate a
higher or lower image resolution, depending on the application and
available computational resources. For example, Wang et al. (2017)
recently used deep generative network to generate images of
2048 1024× resolution.

In addition to the above structure, a batch normalization layer was
added after each layer. Batch normalization layer improves the training
process by optimally normalizing the output of its previous layer (Ioffe
and Szegedy, 2015). Even though batch normalization was not em-
ployed by Dosovitskiy et al. (2015) in their work, it is prevalent in deep
generative network studies (Radford et al., 2015). Additional training
details are listed in Appendix B.

2.7. Rendering tools

Quality visualization techniques are crucial for CAD applications since
they allow for a more detailed and accurate communication of informa-
tion. After training, the deep generative network is able to predict 2D
images of browned dough. Blender, an open-source 3D computer graphics
software (Blender, 2018), was then used to post-process these images by

Fig. 6. Data augmentation method. (1) 186 images were captured, 58% for training and 42% for testing. (2) Each training image was augmented 20 times using
artificial translations. (3) After data augmentation, 2160 images were available for training and 78 images for testing.
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texture-mapping them onto the surface a 3D object (Figs. 7b and 8d).

3. Results and discussion

The network's ability to generate predictive images of laser-
browned dough after training on different training datasets was eval-
uated. Batch normalization was incorporated into all network layers,
unless otherwise noted. In this section, only the results obtained by
separating the training and testing data based on dough moisture value
(w) are shown, while those obtained when data was separated based on
laser height (z), laser speed (s), and using the checkerboard method, are
included in the appendix.

To demonstrate the network's ability to learn dough moisture (w), as
previously indicated in section 2.4, the network was trained using data
related to dough with w 50%= , 60%, and 70% (Fig. 8a), and was tested
using images related to w 55%= and 65% (Fig. 8b). It should be em-
phasized that none of the testing data (ground truth) images were
available to the network during training (section 2.4).

Qualitatively, the prediction images generated by the network after
training (Fig. 8c) are not only photorealistic, but also match ground
truth (Fig. 8b) images for both w 55%= and w 65%= . Both ground
truth and generated images exhibited a darker color and high-frequency
dotted patterns when low z and s values were used. As z and s increased,
resulting in a lower laser energy flux and lower exposure time, surface
color became gradually lighter, with surface patterns of lower fre-
quencies. Fig. 8d gives a rendered view of the lower right corner nine

images of w 65%= in Fig. 8c, i.e. z=17, 20, 23 mm, s=150, 175, 200
mm s−1, hence demonstrating the ability to use images generated by
the network to develop 3D rendered visuals (rendered in Blender).

Quantitatively, the average error per RGB channel per pixel of the
generated image was 8.02% of the permissible intensity range (0 255)− .

Even though the generated images predict a correct general trend,
upon close inspection of individual images, it was evident that the visual
details in most images predicted by the network differed from the corre-
sponding ground truth. The generated images also lacked detailed features
and were thus visually not as “sharp” as their ground truth equivalents.

It should also be noted that quality of the generated images can vary
greatly between contiguous image tiles. For example, when [55, 30,
125] (i.e., w 55%= , z 30= mm, and s 125= mm s−1) is chosen, the
generated image and the ground truth share similar dark black color
and pattern. However, when only s is changed to 150, i.e., when [55,
30, 150] is used, the generated image and the ground truth image have
clearly different color.

This label-dependent consistency issue likely arises because not
enough sampling was applied to the training data. In the training da-
taset (Fig. 8a), the image tile for [55, 30, 150] has a very dark color and
consistent surface irregularity (high frequency pattern), while the
image tile for [60,30,150] has a white/yellow color and more sig-
nificant textural features such as air bubbles (low frequency pattern).
Such drastic differences (discontinuities) in image features between
these two adjacent training images pose a serious challenge for the
generative network's capacity to predict any intermediate values, such

Fig. 7. Network architecture (a) and rendering pipeline (b).
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Fig. 8. Splitting training and testing data
based on dough moisture value w( ).
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as [55, 30, 150]. Thus, further training data is required to address the
discontinuities among adjacent training images and ensure more ac-
curate interpolation output. Adaptive sampling techniques for un-
balanced datasets could also be incorporated to efficiently mitigate this
problem (He et al., 2008).

3.1. Continuous interpolation between images

While the interpolation results discussed in the preceding section
pertained to the interpolation at ground truth label, the focus on this
section is on interpolation at arbitrary input value, thereby achieving
interpolation in a continuous range. Continuous interpolation is a
common feature needed by CAD applications because users often want
to try different input values and see what the manufactured product
virtually looks like before finalizing the input parameters.

Fig. 9a, b, & c shows images of training data of laser height z 30=

mm and laser speed s 175= mm s−1. Only three dough moisture values
(w) associated with this z and s pair were present in the training dataset
(50%, 60%, 70%). Nonetheless, after training, the deep learning model
was able to generate an arbitrary combination of [w, z, s]. Fig. 9d shows
the predicted images for z 30= mm and laser speed s 175= mm s−1

with varying dough moisture values. In the interpolation region, the
dough moisture values span from 50% to 70% water on flour weight
basis, with 1.03% difference between neighboring images. A continuous
transition in color (from black to brown to white), and in surface pat-
tern (from more uniform surface pattern, to less consistent surface
bumps, to smooth) can be observed. This result demonstrates that the
deep neural network did not merely memorize the training data
(overfit), but fitted it in a generalized manner that enables continuous
nonlinear interpolation between the data points in the training set. The
network can also perfectly reproduce the training images pertaining to
the 50%, 60%, and 70% dough moisture content (Fig. 9d).

3.2. Assessing network's potential for extrapolation

To test the network's robustness, dough moisture values (w) outside

of the training data's range, specifically its convex hull (50 70%)− , were
input into the trained model in order to assess the network's ability to
extrapolate images from untested sample sets (Fig. 10a and c). Similar
to the settings used in the tests discussed in the preceding section, both
laser height (z) and speed (s) were held constant at 30mm and
175mm s−1, respectively.

In these experiments, images for less saturated dough (w 45%= ) and
more saturated dough (w 75%= ) were generated to assess the network's
ability to extrapolate (Fig. 10a and c) while surface images of laser-
browned dough with w 50%= and w 70%= were used for comparison
(Fig. 10b and d). The findings indicated that, despite the absence of
ground truth images for w 45%= and w 75%= , the generated images
were photorealistic and similar to their nearest-neighbor images in the
training dataset. Such results confirm the deep generative network's
capability to extrapolate photorealistic images.

Continuous extrapolation was also experimented and demonstrated
in the extrapolation regions of Fig. 9d. Dough moisture values span
from 45% to 50% water on flour weight basis and then from 70% to 75%
water on flour weight basis with 1.03% difference between neighboring
images.

While the network can produce reasonable images through extra-
polation, its ability to extrapolate realistic images outside of the es-
tablished “cookable” range of dough requires further ground-truthing.
From initial benchmark testing, if dryer dough (low w) is heated at a
low laser speed, and high laser energy flux (low z), the surface of the
exposed dough gets vaporized, transitions past burning (dark color),
and produces a powdery unappetizing end result (lighter color). Had
this cooking phenomenon been well documented in the training set,
than the network would have been able to extrapolate more realistic
results.

3.3. Effect of batch normalization

Fig. 11 shows a comparison between the images generated with and
without batch normalization (BN), indicating that the latter suffer from
an artifact due to processing that resembles white noise, especially at

Fig. 9. Training data and generated images of z 30= mm and s 175= mm s−1.
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Fig. 10. Generated images at extreme dough moisture values (w).

Fig. 11. Generated images with and without BN.
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lower laser speeds. Average error per RGB channel per pixel of all the
generated images without BN is 8.25% of the permissible intensity range
(0 255)− , which declines to 8.02% when BN is employed. Even though
this quantitative improvement seems negligible, the visual differences
are apparent. This mismatch between visual perception and quantita-
tive error indicates that the error function needs to be refined so that it
better reflects the visual perception.

Throughout the present study, a Euclidean norm (average per RGB
channel per pixel loss function) was employed to measure the differ-
ence between the generated image and the ground truth image (c.f., loss
function in section 2.6.2 and Appendix B). Advantages to using a Eu-
clidean norm is that it is straightforward to implement and has a stable
training process. While this approach can lead to a trained model that
generates photorealistic images, it does not penalize for digital white
noise artifacts (visible in Fig. 11b). Future research could explore al-
ternative measurement schemes such as SSIM (Wang et al., 2004) to
compare clusters of pixels rather than single pixel values. Furthermore,
recent work on the generative adversarial network (GAN) demonstrates
that promising results can be obtained by training another deep neural
network to measure feature similarity between images (Goodfellow
et al., 2014; Radford et al., 2015). The GAN approach can also be
beneficial for mitigating the previously discussed sharpness issue (Isola

et al., 2017).

4. Conclusions

In this work, we propose a visual modeling pipeline of dough
browning. Experimentally obtained images of laser-browned dough
were used to train a deep generative network. After training, our net-
work was able to predictively generate photorealistic images of
browned dough, which can be textured onto a 3D model. This ex-
ploration—being the first of its kind—will serve as a benchmark for
further visual modeling studies of food and will allow designers to
produce more accurate and photorealistic food products.

The architecture of our data-driven supervised learning model also
makes it easily extensible to other labeled image datasets (i.e., tradi-
tional oven baking, frying, drying, etc.). Future studies should in-
vestigate alternative loss functions and training data sampling schemes
as a means of furthering these results.
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Appendix A. Results for splitting training and testing data based on laser height (z), laser speed (s), and checkerboard

Appendix A.1. Effect of splitting data based on laser height (z)

As shown in Figure A.1, average error per RGB channel per pixel of all the generated images is 7.38% of the permissible intensity range (0 255)− .

Appendix A.2. Effect of splitting data based on laser speed (s)

As shown in Figure A.2, average error per RGB channel per pixel of all the generated images is 7.06% of the permissible intensity range (0 255)− .

Appendix A.3. Effect of checkerboard-splitting of data

As shown in Figure A.3, average error per RGB channel per pixel of all the generated images is 7.16% of the permissible intensity range (0 255)− .

Fig. A.1. Splitting training and testing data based on laser height (z).
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Fig. A.2. Splitting training and testing data based on laser speed (s).
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Fig. A.3. Checkerboard-splitting training and testing data based.

Appendix B. Training details

The network architecture described in section 2.6.2 was implemented in Keras (Chollet et al., 2015) with the following details:

• Deconvolution layer parameters: kernel size (6) and stride size (2) were fixed across the network. These parameters can also be perturbed, but no
significant change to the quality of the network should be observed.

• Activation function: ReLU (Nair and Hinton, 2010) was used as the activation function for all but the last layer, where tanh was used.

• Weight initialization: The normal initiator (He et al., 2015) was used for initializing network weights of all layers.

• Loss function: L1 Euclidean norm or mean absolute error (MAE) was used to measure the difference between the generated and the ground truth
image per RGB channel per pixel. Although L2 Euclidean norm or mean squared error can also be used, no significant changes in the network
quality should be observed.

• Optimization solver: Adam (Kingma and Ba, 2014) with momentum parameters β β0.9, 0.9991 2= = and regularization parameter ε 10 8
=

− was
used. A constant learning rate of 0.0002, constant batch size of 32, and epoch size of 10000 were chosen for all the examples discussed in the
following sections.
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