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S1. Particle Design 

 

 
Figure S1: (a) A single particle structure, (b) particles in expanded and contracted states, and (c) a close-up view of 

magnetic connectors. 

 

The structural parts—the base plate, guiding plates, rotating disc, and T-shaped 

connectors—were cut from green acrylic sheets using laser beam. Nylon screws were used as the 

sliding pins to drive the Hoberman Flight Ringä, as well as the pivots for the connectors on the 

outer perimeter. To accommodate the pins and pivots, small holes were drilled on both the inner 

and the outer Flight Ring perimeter. A set of nylon standoffs and metal screws was used to support 

the upper half of the structure, leaving enough space for the electronic parts, which are listed in 

Table S1. 

A circular, 6 mm-thick acrylic plate served as the particle base, as it offers a smooth bottom 

surface, allowing the particle to slide on the ground. It also supports the particle’s structure and 

functional parts, including the servo, micro-controller, wireless communication module, 

rechargeable battery, and power switch. In addition, an array of six Cadmium Sulfoselenide (CdS) 

photoelectric sensors were mounted on the top in the center to measure the intensity of 

environmental light. A Hoberman Flight Ringä was modified to produce the required radial 

expansion and contraction (Fig. S1a).  

 

 



Table S1: Parts list of the particle 

Item Model Manufacturer Details 

Microcontroller Arduino Fio v3 SparkFun Electronics ATmega32U4 running at 8MHz 

Photo sensors PDV-P9006 Advanced Photonix Inc CdS Photoconductive photocells (×6) 

Wireless module XBee S1 Digi International Inc. 
XBee 1mW wire antenna - Series 1 
(802.15.4) 

Rechargeable 
battery 

31004 Tenergy Corporation 
Li-Ion 7.4V 2600mAh rechargeable battery 
pack 

Servo HS-430BH Hitec RCD USA, Inc Maximum torque range: 5.0 kg.cm 

Load 
RNV14FAL1M50
CT-ND 

Stackpole electronics 
Inc. 

1.5 MΩ, high voltage anti-moisture metal 
film resistor 

Battery charger TLP-2000 Tenergy Corporation 
Li-Ion/Li-Po battery pack charger: 3.7V-
14.8V 

 

Particle expansion and contraction was driven by the servo motor and transmission 

mechanism, which consisted of a rotating disc with curved slots, an upper and lower guiding plate, 

and seven sliding pins fixed to the Flight Ring (Fig. S2). The rotating disc was directly connected 

to the servo motor shaft. During rotation, constrained by the curved slots of the rotating disk and 

the radial slots of the guiding plates, the pins fixed to the Flight Ring slide outward and inward 

from the particle center, thereby expanding and contracting the Flight Ring in congruity. 

Each particle can expand and contract in a continuous manner, resulting in variable 

diameter ranging from 15.5 cm to 23.5 cm (Fig. S1b). In addition, 14 T-shaped connectors with 

the ability to passively pivot were arranged at equal angular intervals along the outer perimeter of 

the top disc. Two 5 mm-diameter spherical neodymium magnets were enclosed inside each 

connector with sufficient space to freely rotate. Through small outward-facing openings, the 

magnets included in one particle can directly connect with those attached to other particles (Fig. 

S1c). These magnetic forces create adhesion between adjacent particles, resulting in densely-

packed configurations. The design flexibility also allows for adjacent particles to maintain contact 

while they expand and contract at different rates. 
 

 

 



 
Figure S2: Particle transmission mechanism. (a) Transmission parts and structure. (b) Rotational disc dimensions. 

(c) Expansion process and (d) contraction process. 

 

  



S2. Particle Robot Locomotion 

 

As the particles expand and contract radially, their center of gravity does not move during 

this cyclical motion. Thus, to achieve a single-step sliding motion on the ground, the particle needs 

a larger, fixed object to collide with, including the surrounding static particles. In other words, a 

particle must produce an outward force during expansion that is greater that the static friction 

between its bottom layer and the ground, but is less than the friction experienced by the other 

particles, thereby causing it to slide away from the other members of the aggregate. Furthermore, 

the magnetic forces must exceed the static friction experienced by the particle, but remain below 

the overall static friction of the group, to ensure that the contracting particle will slide towards the 

other particles and maintain the connection. These force requirements for a single particle can be 

written as:  

 

!×#×$%&'&() < +,-.'/%(0/ < 1×!×#×$%&'&() (1) 

  

!×#×$%&'&() < +)0/&2')&(0/ < 1×!×#×$%&'&()		 (2) 

 

where n is the number of the particles acting as the static object and m is the mass of a single 

particle.  

For a group of connected particles, locomotion can be achieved if their expansion and 

contraction is coordinated (Fig. S3). Specifically, as expansion of one particle propels its center of 

gravity outward, as it contracts, the subsequent particle expands, allowing it to maintain its new 

position. The center of gravity of the subsequent particle has also moved outwards in the same 

direction. This motion propagates until the final particle is reached, which also slides in that 

direction during its contraction. As a result of this chain of motion, the group moves forward or 

backward by ΔS distance, once all the particles have finished their single-step sliding motions. The 

actuation sequence of individual particles determines the sliding direction of the group, whereby 

the particles produce an expansion−contraction “wave” that propagates in the opposite direction 

of their locomotion.  



 
Figure S3: Illustration of particle robot locomotion. Particles expand and contract sequentially to generate a net 

forward locomotion. 

 

 In order to achieve a continuous movement, each particle in the group needs to periodically 

run a full expansion−contraction cycle, with a pause (resting time) between cycles. This pause is 

set to a constant time interval, in order to allow other particles in the group to complete their sliding 

motion without canceling the net movement of the group. Thus, the duration of this pause tp is 

determined by the minimum number of particles per wave (N) for an efficient single-step sliding, 

which was set as  

 

4. ≥ (7 − 1)×
1

2
< (3) 

  

In this study, the expansion and contraction of individual particles was set to follow a 

sinusoid function: 

 

= 4 =
∆=

2
×(1 + sin 2DE4 −

D

2
) + =F(/ (4) 



 

where R(t) represents the particle radius at moment t, =F(/ is its minimum radius (fully 

contracted), ∆= denotes the maximum expanded radius of the particle (fully expanded), f is the 

expansion−contraction frequency, and t is the relative time within a cycle. Moreover, the delay 

between the sequential actuation is set to	G
H
<, ensuring that each particle starts to run at	4I (global 

time):  

 

4I = J/ − 1 ×
1

2
< (5) 

 

where Sn is the actuation, or phase delay, sequence index of the particle in the group, and T is the 

period of each expansion−contraction cycle.  

 

  



S3. Sensor Characterization 

 

CdS photocells are widely used for detecting environmental light, since their resistances 

can vary depending on different light intensity levels. In the context of the present study, light 

intensity is defined as the light illuminance level at the individual particle’s radial position 

(distance) from the light source. It is further assumed that the light intensity decays with the 

increase of radial distance following the inverse-square law, yielding the following expression:   

 

K/ =
L%
4DN/H

=
K%
N/H
			 (6) 

 

where Ls and Is are the light source’s luminous flux and luminous intensity, respectively, and rn is 

the particle’s radial distance from the light source. In the present investigation, the luminous flux 

and intensity of the light source were maintained at the constant level in all experiments.  

The sensitivity performance of a CdS photocell can be characterized by O, defined as 

 

O =
log=GSS − log=GS
log KGS − log KGSS

 (7) 

 

where R100 and R10 are the resistances at 100 (I100) lux and 10 (I10) lux, respectively. The O value 

of the sensors employed in the present work is ≈1.0. This relationship can be used to estimate a 

particle’s position in dark room environment based on the measured light intensity. From Equation 

(7), the following equalities can be derived: 

 

O =
log=/ − log=-
log K- − log K/

=
log	

=/
=-

log
K-
K/

= 1 (8) 

 
=/
=-

=
K-
K/

 (9) 



where Rn and Rx are the resistances at different positions corresponding to the measured light 

intensities of In and Ix.  Introducing the light intensity definition into Equation (9) allows the 

relationship between the photocells’ resistances and the particles’ positions to be expressed as: 

 

=/ =
K-
K/
=- =

N/
N-

H

=- (10) 

 

 
Figure S4: Characterization of the light intensity sensors. (a) Sensor array and (b) measurement circuit. 

 

To obtain the light intensity pseudo-value, the analog values of load resistor voltages can 

be measured through the on-board voltage-divider circuits (Fig. S4) and subsequently converted 

to their digital equivalents (0~1023). As previously noted, the light intensity value Vn decreases as 

the particle’s distance rn increases and vice versa. The digital equivalents of the load’s analog 

voltage values can also be calculated by: 

 

T/ = 1023×
=W

=/ + =W
= 1023×

=W
N/
N-

H
=- + =W

 (11) 

 

T- = 1023×
=W

=- + =W
 (12) 

 



	=- =
(1023 − T-)=W

T-
 (13) 

 

where RR denotes the 1.5 MΩ load resistance.  From these equations, the particle positons can be 

estimated using the following relationship: 

 

N/
H =

T-(1023 − T/)

T/(1023 − T-)
N-
H (14) 

 

As indicated by Equation (14), for estimating a particle’s position rn, it is necessary to 

obtain its intensity measurement (voltage) Vn, as well as determine the reference particle’s position 

rx and light intensity Vx. 

To characterize and verify the sensor system performance, measurements were conducted 

using an array of nine particles arranged in a straight line, starting from the light source’s projection 

center. In this experiment, the particle below the lamp was chosen as the reference particle (see 

Fig. S5a), with r1 ≈ 28 cm and V1 measured at 980. The particles’ planar positions (linear distances) 

Dn along the straight line on the ground can be calculated by 

 

X/ = N/H − N-H			 (15) 

 

The true positions and the estimated positions of the particles are shown in Fig. S5b, where 

each estimation represents an average based on five trials. This result indicates that the particles’ 

relative positions can be successfully estimated using the light intensity measurements. Similarly, 

the light intensity levels can also be predicted in this experiment, if the true positions of the 

particles are known. The error bars represent one standard deviation from the mean. 



 
Figure S5. Light intensity measurement and position estimation. (a) Experimental setup and (b) test results. 

 

As shown in Fig. S6a, all locomotion tests were conducted in a dark room, and a group of 

four lighting soft-boxes with 85 W bulbs (Neewer Technology Co., Ltd) were used for videos and 

photos when needed. The particles were placed on a flat and clean horizontal surface of 320 × 200 

cm2 area. In order to build the test ground, a polypropylene and latex rug of 5 mm thickness 

(Garland Sales, Inc.) was placed directly on the room floor, and was covered by a blackout cloth 

projector screen film of 0.35 mm thickness comprising of 70% polyester and 30% cotton with 

rubber coating (Carl's Place LLC). A high-definition webcam (C920 HD Pro, Logitech) situated 

225 cm above the floor was used to record the experiments from top-view. This camera setup can 

capture a test field of approximately 285× 160 cm2 area. The static “wall” and “obstacle” in our 

experiments were made of 38 cm tall cylindrical plastic shipping jugs of 29 cm diameter 

(McMaster-Carr Supply Company). 

For the phototaxis experiments, 35 cm tall desktop lamps with 25 W yellow color 

incandescent bulbs (McMaster-Carr Supply Company) served as light sources. The particles and 

light bulb(s) were placed in random configurations by the experimenter (Fig. S6b). A voltage-

divider circuit (1.5 MΩ load resistance) was used to provide an analog reading of the voltage over 

the load, which was subsequently converted to a digital value corresponding to the light intensity 

(1023~0). Each intensity reading is an averaged value based on 50 independent measurements. A 

USB-based Xbee module (XBee Explorer, SparkFun Electronics) and the X-CTU software (Digi 

International Inc.) were used to receive the particles’ broadcasts and transmit global start/stop 

commands to the particles. The communication baud rate was set at 9600.  



 
Figure S6: Locomotion Testing. (a) Experimental set-up for robot locomotion and (b) initial configurations of the 

nine locomotion experiments.  



S4. Relative Position (Light Intensity) Estimation 

 

Several methods can be used to determine the particle’s position based on light intensity 

measurements, such as applying the inverse square relationship between light intensity and 

distance, or self-ranking based on broadcast readings.  While different methods were employed in 

the locomotion experiments, no statistically significant differences in their effectiveness were 

noted.   

A. Direct estimation without communication 

One of the simplest methods for estimating a particle’s relative position is based on the 

application of Equations (14) and (15) given above. Once a reference position and its light intensity 

are known—which can be chosen arbitrarily, corresponding to, for example, the location with the 

highest intensity in the field—each particle’s position (relative to the reference position) can then 

be estimated based on its intensity measurement. In the tests conducted as a part of this work, the 

point directly below the light bulb was chosen as the reference position, at 28 cm vertical distance 

to the light source center. The light intensity of 980 was measured at this reference position. 

Therefore, each robot particle’s planar distance Dn to the reference point could be calculated, and 

the actuation sequence index Sn  could be obtained by applying the expression below:  

 

J/ 	=
X/
X
	 (16) 

 

where D is the minimal diameter of the particle, which was approximately 15.5 cm in all 

experiments, based on this particular particle design. This method offers a quick and accurate 

means of estimating each particle’s relative position and intensity level within a group, based on 

the a priori determined values of the chosen reference point’s position and the corresponding light 

intensity. 

B. Communication based linear approximation method  

The actuation sequence index or the signal intensity level can also be quickly approximated by 

applying a linear proportional method through particle−particle communication. Here, it is 

assumed that the light intensity decreases linearly as the planar distance between the particle and 



the light source increases. Thus, the particles can then be equally divided into Nw groups separated 

by the intensity decrement of ΔV, which can be calculated from the expression below: 

∆T =
TF'- − TF(/

7Y
		 (17) 

 

Using this value, the particle’s actuation sequence index or intensity level Sn   can be calculated 

via: 

 

J/ 	=
TF'- − T/

∆T
	 (18) 

 

While the communication-based method provides a quick estimate, its accuracy is relatively low 

due to the assumption of the existence of a linear relationship between the light intensity and 

distance. 

C. Nonlinear distance−intensity relationship-based method 

If the light source and a group of particles are assumed to be located in a planar field, then 

the relative position (signal intensity level) of a particle can be estimated from the communications 

among the particles. The height difference between the sensors and the light source is ignored in 

this case. As shown in Fig. S7, the reference point x was chosen, whereby its radial distance to the 

center of the light source is xD, where D represents the diameter of a particle when contracted. The 

distance of the nearest (leader) particle to the light source is defined as KD. As the body length of 

the robot group comprising of N particles is ND in the radial direction, distance between the 

farthest particle and the light source is (K+N)D. Similarly, an arbitrary particle’s radial distance to 

the light source can be expressed as (K+n)D, where n is the particle’s relative position (intensity 

level) within the group. The light intensities of the reference point, the nearest particle, the farthest 

particle, and a particle in the group are denoted as Ix, Imax, Imin, and  In, respectively. As shown in 

Equations (19)−(29) given below, the ratios between those distances are denoted by a, b, c, and ρ. 

Therefore, each of the particles’ relative positions (intensity level) Sn can be estimated by applying 

Equation (30) based on its own intensity level, the maximum intensity, and the minimum intensity 

of the group.  This method yields a very accurate estimation of the relative position (light intensity 

level) for each particle in a 2D field. 



 
Figure S7: Distance−intensity relationship-based estimation illustration.  
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J/ 	= 7Y×_ (30) 

 

D. Stronger intensity level counting method  

The particle’s intensity level can also be estimated by conducting pairwise comparisons of 

the intensity levels among the particles within the group through particle−particle communication. 

In this estimation process, each particle broadcasts its own light intensity level to the group, as 

well as receives the intensity levels from other particles. The received information is then 

compared with the particle’s own intensity level and the record of stronger intensity levels. A 

received intensity level is counted as a new stronger intensity level only when it is stronger than 

the particle’s own intensity, and it is distinct from any of the previously recorded stronger 

intensities. Finally, a count of stronger intensity-level is obtained for each particle after this 

process, which can be directly used as the relative position and intensity level Sn. The steps 

pertaining to this method are given in Algorithm 4. In the experiments performed as a part of this 

investigation, the distinguishable intensity difference was defined as ±10 for the intensity-level 

comparison, and each particle’s intensity measurement was broadcast repeatedly five times during 

each estimation process. Although this method is simple and efficient, a record of “stronger 

intensity” is needed for each particle. 

  



S5. Control Algorithms for Particle Robot Phototaxis 

 

Algorithm 1: Light intensity/gradient measurement and relative position estimation  

 For each particle 

1 Measure its light intensity 

2 Broadcast the measured light intensity 

3 Receive the relevant light intensity measurements from the group (i.e., the Max or Min values)   

4 Estimate its relative position to the light source from the known light intensity values 

5 Obtain its actuation sequence index Sn based on the estimated position 

6 End  

 

Algorithm 2: Coordinated locomotion  

 For each particle 

1 Get the actuation sequence index Sn  and actuation period T  

2 Set the local time t = 0 

3 Wait for an initial time tI  

4 Repeat 

5           Run expansion−contraction cycle with the period T 

6           Pause for a resting time tp 

7 Until t > update time   

8 End  

 

Algorithm 3: Automatic phototaxis motion  

 For each particle 

1 Repeat  

2        Light intensity/gradient measurement and relative position estimation 

3        Coordinated locomotion 

4 Until the measured light intensity does not increase anymore  

5 End  

 

 



Algorithm 4: Stronger intensity-level counting   

 For each particle 

1 Initialize the stronger intensity counter and record, SI_Number ← 0 and  SI_Record ← empty 

2 Get its current light intensity In 

3 Repeat  

4      Receive intensity information  Io from other particles via communication (broadcast 

messages) 

5      If Io is not null and Io >In  

6             If  Io is not equal (close) to any of the previous intensity records from SI_Record   

            then 

7                    Save Io into the stronger intensity record (array), SI_Record ← Io 

8                    Update the stronger intensity level counter,  SI_ Number ← SI_ Number +1 

9             End if  

10       End if        

11 Until broadcasts end 

12 Return SI_ Number 

13 End 

 

  



S6. Statistical Analysis of Experiments 

 

The video recordings of the phototaxis experiments were processed in Matlab to track the 

particle robot centroid over time. The processing commenced by converting the frames to 

grayscale and enhancing the contrast, followed by edge detection, binarization, suppressing the 

light source, morphological operations, and finally perimeter tracing of the agglomerate particles. 

The extracted perimeter was subsequently used to infer the particle robot centroid. Fig. S8 shows 

typical intermediate results of the aforementioned sequence of processes for analyzing a single 

frame.  

 

 
Figure S8: Analysis of phototaxis experiments. The steps used to process the experiment recordings are shown with 

an example video frame. The final step shows the original image with the centroid superimposed. 

 

To facilitate automated video processing, the particle robot was approximated as a 

continuous and uniform region when determining the centroid, as opposed to tracing the position 

of each particle and treating the particles as point masses to calculate the robot centroid. This 

approximation, however, introduces noise to the centroid data by being biased towards the 

expanding particles in any given frame. To mitigate this issue, subsequent statistical analysis on 

centroid locations inferred at 30 s intervals was performed, corresponding to approximately 3.5 

1. Apply binary gradient mask 2. Apply dilated gradient mask

3. Remove light source on right 4. Close image and remove holes

5. Open image to remove small artifacts 6. Calculate centroid 



expansion−contraction cycles. As a part of this analysis, the frame of reference was transformed 

to ensure that the initial centroid defines the coordinate system origin and the stimulus defines a 

point on the positive y-axis. Within this frame of reference, one-tailed t-tests were conducted for 

the motion in the y-direction, whereby the null hypothesis postulated that the motion in the y-

direction is random with a mean of zero. In each experiment, the null hypothesis was rejected with 

p < 0.01, indicating statistically significant locomotion towards the light source. These results are 

shown in Table S2. 
 

Table S2: Statistical results of phototaxis experiments. One-tailed t-tests were performed on the motion results of 

nine locomotion experiments. The average speed and peak speeds are also included. The ordering of the images in the 

table corresponds to Fig. 3d and Fig. S6b. 

Number Control Method 
Average Speed  

(% min. 
diameter/cycle) 

Peak Speed 
(% min. 

diameter/cycle) 
P-Value 

1 
(A) Direct estimation without 

communication 
3.03 8.96 3.1309e-07 

2 
(A) Direct estimation without 

communication 
1.90 6.74 3.1668e-09 

3 
(A) Direct estimation without 

communication 
2.61 7.99 1.0892e-07 

4 
(C) Nonlinear distance-

intensity relationship method 
1.79 5.02 3.5582e-07 

5 
(D) Stronger intensity 

counting method 
3.13 12.89 6.7304e-09 

6 
(C) Nonlinear distance-

intensity relationship method 
1.95 6.14 3.3364e-04 

7 
(C) Nonlinear distance-

intensity relationship method 
3.10 12.13 3.3641e-04 

8 
(B) Communication based 

linear approximation method 
2.05 5.11 1.2635e-05 

9 
(A) Direct estimation without 

communication 
2.25 8.28 8.2513e-10 



S7. Characterization of Forces Acting on Individual Particles 

 

For the force measurements, a universal testing machine (Instron 5944, Instron 

Corporation) was used to characterize the adhesive force between the connectors, the pulling and 

pushing forces generated by the particle, and the friction between the particle and the test surface 

materials. For the adhesive force measurement, the Instron machine was controlled to pull apart 

two joined magnetic connectors at a speed of 0.1 mm/s (Fig. S9a). The applied forces and the 

connectors’ separating distances were recorded, as shown in Fig. S9b. The peak adhesive force 

exerted by the connectors was approximately 4.5 N, based on five trials. The solid line in Fig. S9b 

represents the averaged values, while the shadow area represents the standard deviations. 

 

 
Figure S9: Measurements of particle-to-particle connection force. (a) Experimental setup and (b) test results. 

 

 
Figure S10: Measurements of friction between the particle and surface. (a) Experimental setup and (b) friction 

results. 



 To characterize the friction between the particle and the test surface, a flat platform (of 

30×30 cm2 area) covered by the same materials as those used in the experiments, was created. As 

shown in Fig. S10a, a particle was placed on this platform, and it was connected to the Instron 

machine through a thin string over a miniature metal pulley. The Instron machine was used to pull 

the particle, forcing it to slide across the platform at a constant speed (10 mm/s). The displacement 

and the pulling force were both recorded during the sliding. Fig. S10b shows that the maximum 

friction between the particle and the test surface was approximately 2.3 N, averaged across five 

trials. The solid line represents the average values, with the shadow area depicting the standard 

deviations. 

To measure the pulling force, the particle was fixed vertically, and its one connector was 

linked to the Instron machine’s upper gripper via a thin and inextensible string, as shown in Fig. 

S11a. In this test, the particle was programmed to contract from the maximum diameter to the 

minimum diameter. The Instron machine was controlled to follow the particle’s contraction and 

rapidly balance the pulling force. For the pushing force measurements, the particle was 

programmed to extend radially from the minimum diameter to the maximum diameter. As shown 

in Fig. S11c, a separated connector was clamped on the Instron machine to ensure that the contact 

with the particle’s connector is maintained during expansion. The Instron machine was set to freely 

move following the particle’s expansion, while the required balance force was recorded. The 

results are shown in Fig. S11b and Fig. S11d. The maximum pulling force produced by the particle 

was approximately 9 N, whereas the maximum pushing force was approximately 8 N. Throughout 

the contraction process, the pulling forces typically exceeded 3 N, while the pushing forces were 

typically greater than 2 N throughout the expansion process. 



 
Figure S11: Measurements of the particle’s pulling and pushing force. (a) Experimental setup for pulling force 

tests and (b) pulling force results. (c) Experimental setup for pushing force tests and (d) pushing force results. 

 

To characterize the particle’s contraction and expansion behavior, single 

expansion−contraction movement tests were conducted at different periodic lengths (speeds). 

Using a constant time for each step (20 ms), a particle was programmed to run the 75-step, 150-

step, and 300-step expansion−contraction tests, respectively. Particle movements were recorded 

using a camera at 60 frames per second, and the particle’s radius changes and time were both 

obtained using an open source image analyzing software (Tracker, http://physlets.org/tracker/).  As 

shown in Fig. S12, the particle was able to expand and contract by approximately 35 mm in all 

three tests, and all the movement trajectories exhibit clear sinusoidal shapes, corresponding to the 



controller design.  The solid lines represent the results averaged over five trials for each test, and 

the shadow areas denote the corresponding standard deviations. 

 

 
Figure S12. Particle expansion-contraction at different speeds. Radial change over time when motor steps are 

varied. 

 

 

  



S8. Simulation Algorithm and Performance 

 

The initial placement of the particles is determined through a randomized algorithm, 

detailed below. In general, the first three particles are placed adjacent to one another, and the 

remaining particles are positioned tangentially to at least one particle, without intersecting any 

placed particles. Fig. S13 shows random initial configurations of ten particles. This algorithm 

differs slightly from the experimental method, in which each particle is placed tangentially to at 

least two particles. At small scales this difference is negligible, i.e. particles with one adjacent 

neighbor attach to a second particle after one or two expansion-contraction cycles. At larger scales, 

with 1,000 or 10,000 particles, this algorithm results in more sparse configurations that don’t 

reconfigure as quickly into dense formations. However, changing to algorithm to match the 

experimental method, such that each additional particle is placed tangent to at least two particles, 

is computationally taxing. To remedy this initial difference in particle density, the simulations 

were run for at least 2 hours, and the first 30 minutes were ignored when calculating speed.  

 

Algorithm 5: Placement of particles in simulation 
1 Set the first particle’s position `G ← (0,0) 

2 Set the second particle’s position `H tangent to `G, in a random normal direction c 

3 Set the third particle’s position `d tangent to both `G and `H, randomly selected 

4 Set `e\^fg ← 0  

5 For particle h = 4: 7 

6         While `e\^fg = 0  

7                  Randomly select placed particle from 1	to	h − 1 

8                  Randomly select direction c  

9                  For h1^Nf!f14 = 0: 2D   

                         Set  c( ← 	c + h1^Nf!f14 

10                         Set `( adjacent to selected placed particle at c(  

11                         If `( does not intersect with any placed particles   

14                               Set c ← 2D and `e\^fg = 1 

15                         End if 

16                  End for 

17         End while 

18 End for 



 
Figure S13: Initial configurations generated by simulation.  Particles were generated by the particle robotics 

simulation for the dead-particle study in random initial configurations. The initial configurations of the ten-particle 

robots are shown in this illustration. 

 

The simulation environment models the particle robotic algorithm and the physical 

particles using the experimental results. The variables are represented in the same notation as 

before, with < denoting the expansion−contraction time and 4. representing the pause duration. 

Given that the particles’ phase delay is updated at 2−5 minute intervals during the experiments, to 

accurately replicate the experimental process, a variable 7 is introduced to represent the number 

of expansion−contraction cycles that the robot undergoes between phase updates. The simulation 

algorithm steps are presented below, and the code is available at the link shared in the main text. 

 

Algorithm 6: Particle robot simulation 
1 Initialize 4 ← 0, 1 ← 0, and particle positions `( 

2 Set particle radius =( ← =F(/, phase k( ← 0, velocity l( ← 0, repulsive forces +(
2 ← 0,	and 

attraction force +(
' ← 0 for each particle h 

 
3 If 4 ≥ 	< + 	4.   

4           Set 4 ← 0 and 1 ← 1 + 1 

5 End if 

6 If 1 ≥ 7   

7          Set 1 ← 0  

8          Update phase k( for each particle 

9 End if 



10 For each particle h 

11         If k( < 	4	 < < + k(   

12                 Update =( 

13         End if 

14         For each neighboring particle m  

15                Calculate distance g(n 

16                If g(n < 0  

17                         Update repulsive force +(
2 

18                Else  

19                         Update attraction force +(
' 

20                End if 

21         End for 

22 For each particle h 

23         Update velocity l( and position `( 

24 End for 

25 Increment cycle time 4 ← 	4 + Δ4 

26 Repeat   

 

The simulation was validated against physical experiments. Fig. S14 shows the results of 

fitting the simulation of a robot comprised of five particles in a row to the corresponding 

experimental data. Fig. S15 shows comparative results obtained from simulation verification, 

based on a ten-particle robot in an amorphous configuration using the same parameters. 

Additionally, Fig. S16 compares the directional variability between the nine experiments to the 

simulation results, varying from ten particles to ten thousand particles.  

 



 
Figure S14. Simulation parameter fitting results, based on a five-particle linear robot. (a) Image of an experiment 

and the corresponding simulation model. (b) Plot comparing the x-coordinate of the centroids obtained experimentally 

and through simulation vs time. (c) Plot comparing the y-coordinate of the centroids obtained experimentally and 

through simulation vs time. (d) Plot of distance between the experimental and simulation-based centroids vs time (root 

mean square error is 0.8015 cm). 
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Figure S15: Simulation verification results based on a ten-particle amorphous robot. (a) Image of an experiment 

and the corresponding simulation model. (b) Plot comparing the x-coordinate of the centroids obtained experimentally 

and through simulation vs time. (c) Plot comparing the y-coordinate of the centroids obtained experimentally and 

through simulation vs time. (d) Plot of distance between the experimental and simulation-based centroids vs time (root 

mean square error is 7.3171 cm). 

a

b

c

d

a

b

c

d



 
Figure S16: Variance of motion of particle robots. The angle of motion of the simulated particles towards the light 

source was measured every 30 seconds. Similar data from the physical experiments (Fig. 4d) is included here for 

comparison. 

 

 The simulation environment incorporated Compute Unified Device Architecture (CUDA) 

enabled GPUs for parallel processing to achieve tractable simulations at scale. Fig. S17 depicts the 

relationship between the execution time and particle robot size. The number of particle-to-particle 

interactions processed per (real-world) second is depicted on the same graph. It can be noted that, 

even though greater robot size corresponds to an increasing number of particle-particle interactions 

that need to be processed, the execution time remains approximately constant for robots 

comprising up to 10,000 particles. This finding indicates that resource utilization on the GPU 

employed (NVIDIA GTX 1070) is not saturated by the simulation environment when the robot 

consists of fewer than 10,000 particles. In fact, the increase in total number of interactions is 

balanced by the increase in number of particle-particle interactions processed per second by the 

simulation environment. Furthermore, using a single GPU is faster than real-time even when 

simulating a particle robot composed of 200,000 particles. While further increases in the robot size 

will cause a significant increase in the execution time, this may be mitigated by using multiple 

GPUs. 
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Figure S17: Simulation performance as measured by calculating particle-to-particle interactions per second. 

 

  



S9. Simulation Studies and Results 

 

The simulation environment was used to explore the effects of particle robots incorporating 

a certain percentage of dead (malfunctioning) particles at different scales. The percentage and 

number of dead particles was varied and simulated with eleven random configurations. The results 

are presented in Table S3, in mm/s, and Table S4, in percent of minimum diameter per cycle. As 

described above, the first 30 minutes of the simulation were not included in the speed calculation 

because the algorithm to place particles in random, amorphous configurations required a tradeoff 

between efficiency and particle density. During the first 30 minutes of the simulations, the particle 

configuration changes from sparse to dense, particularly when there are 103 particles or more.  

 
Table S3. Speed of dead-particle simulations (mm/s) 

No. of 

Particles 

Percentage of Dead Particles 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

10 1.24±0.44 0.95±0.50 0.74±0.47 0.37±0.50 0.21±0.26 0.17±0.30 0.01±0.07 -0.01±0.04 -0.00±0.00 

100 0.64±0.19 0.43±0.09 0.31±0.11 0.16±0.07 0.84±0.04 0.03±0.02 0.00±0.00 0.00±0.00 0.00±0.00 

1,000 0.45±0.05 0.33±0.04 0.22±0.02 0.13±0.02 0.63±0.01 0.02±0.01 0.01±0.01 0.00±0.00 0.00±0.00 

10,000 0.27±0.01 0.20±0.01 0.14±0.01 0.09±0.01 0.05±0.00 0.02±0.00 0.01±0.00 0.00±0.00 0.01+0.00 

 
Table S4. Speed of dead-particle simulations (% minimum diameter/cycle) 

No. of 

Particles 

Percentage of Dead Particles 

0% 10% 20% 30% 40% 50% 60% 70% 80% 

10 9.60±3.40 7.39±3.87 5.76±3.63 2.88±3.82 1.65±2.01 1.34±2.33 0.06±0.54 -0.07±0.32 -0.01±0.02 

100 4.99±1.43 3.33±0.70 2.44±0.82 1.22±0.51 0.65±0.33 0.22±0.14 0.03±0.03 0.03±0.01 0.00±0.00 

1,000 3.47±0.41 2.53±0.28 1.73±0.18 0.98±0.17 0.49±0.11 0.19±0.09 0.08±0.05 0.08±0.00 0.00±0.00 

10,000 2.09±0.07 1.57±0.08 1.12±0.06 0.73±0.04 0.41±0.02 0.19±0.02 0.07±0.00 0.07±0.00 0.01+0.00 

 

The simulation framework was also used to study the performance of particle robots when 

encountering an obstacle with a narrow gap. As in the dead-particle study, these simulations were 

defined using the physical particle characteristics and fitted coefficients. The number of particles 

were varied from 10, 100, 1000, and 10,000 particles. A parameter referred to as DPD (densest 

packing diameter) was defined to approximate the diameter of the particle robot, assuming all 

particles are contracted and in the most densely-packed circular configuration. The gap size was 

varied as a percentage of the DPD. This parameter was also used to define the distance of the 



obstacle (0.75 DPD from the initial centroid) and the position of the light source (2.5 DPD from 

the initial centroid). These gap size amounts are listed in Tables S5 and S6 in centimeters and 

minimum particle diameter, respectively. The thickness of the obstacle was fixed to one minimum 

particle diameter. The particles that sense negligent light intensity (i.e. blocked by the obstacle) 

oscillate at the end of the cycle, as if defining the lowest end of the signal gradient.  

 
Table S5. Gap sizes for varying number of particles with units in centimeters 

Number of 
Particles 

Densest Packing 
Diameter (cm) 

20% Gap 
(cm) 

30% Gap 
(cm) 

40% Gap 
(cm) 

50% Gap 
(cm) 

60% Gap 
(cm) 

70% Gap 
(cm) 

80% Gap 
(cm) 

10 59.1 11.82 17.73 23.64 29.55 35.46 41.37 47.28 

50 123.2 24.64 36.96 49.28 61.60 73.92 86.24 98.56 

100 171.8 34.36 51.54 68.72 85.90 103.08 120.26 137.44 

500 374 74.80 112.20 149.60 187.00 224.40 261.80 299.20 

1000 526.4 105.28 157.92 210.56 263.20 315.84 368.48 421.12 

5000 1165.8 233.16 349.74 466.32 582.90 699.48 816.06 932.64 

10000 1644.9 328.98 493.47 657.96 822.45 986.94 1151.43 1315.92 

 

Table S6. Gap sizes for varying number of particles with units in particles (minimum diameter) 

Number of 
Particles 

Densest Packing 
Diameter 
(particles) 

 20% Gap 
(particles)  

 30% Gap 
(particles) 

 40% Gap 
(particles)  

 50% Gap 
(particles) 

 60% Gap 
(particles) 

 70% Gap 
(particles) 

 80% Gap 
(particles) 

10 3.81 0.76 1.14 1.53 1.91 2.29 2.67 3.05 

50 7.95 1.59 2.38 3.18 3.97 4.77 5.56 6.36 

100 11.08 2.22 3.33 4.43 5.54 6.65 7.76 8.87 

500 24.13 4.83 7.24 9.65 12.06 14.48 16.89 19.30 

1000 33.96 6.79 10.19 13.58 16.98 20.38 23.77 27.17 

5000 75.21 15.04 22.56 30.09 37.61 45.13 52.65 60.17 

10000 106.12 21.22 31.84 42.45 53.06 63.67 74.29 84.90 

 

While there are many different configurations and variables that could be tested, this study 

demonstrates the ability of particle robots to move through narrow gaps in obstacles. The results 

of the gap study are presented in Fig. S18 with the shaded area representing one standard deviation. 

By increasing the number of particles, there is greater success of particles passing through the gap 

and reduced variation of this behavior. Conversely, the results show the benefits of smaller, more 

numerous particles when adapting and maneuvering through narrow spaces. Again, the simulation 

environment is fit to the physical particles and not optimized for motion at large scales, and 

therefore the best performance is observed with 1,000 particles.  



 

Figure S18: Particle motion through a narrow gap. (a) The number of particles are varied along with the gap size, 

which is proportional to the DPD. For each case, ten simulations were run for 4,500 cycles respectively. (b) An 

example of 10,000 particles moving through 30% DPD gap over time. 

 

Furthermore, a study on carrying capacity was conducted to demonstrate the potential 

applications of particle robots with different numbers of particles. The object being transported is 

circular, with the same mass and friction coefficient as the particles. The parameter being tested 

was the size of the object, by varying the radius from 20%-80% DPD. Results are shown in 

Supplementary Video 6 and Fig. S19 for 1,000 particles. We found that 10 particles and 100 

particles were unable to manipulate, and instead treated it as an obstacle. On the other hand, with 
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1,000 particles, the objects were carried a significant distance, however smaller objects were 

eventually left behind. 10,000 particles consistently carried the objects placed in front of their path, 

demonstrating the value of large-scale particle robots. While this study explored the effects of 

object size on carrying capacity, other variables can be studied, including mass of the object, 

friction between the object and surface, and attraction between the particles and the object.  

 

 
 

Figure S19. Carrying capacity of 1,000 particles. The circular object intended for transport, shown in black, has the 

mass and friction of a single particle and there is no attraction between the particles and the object. The diameter of 

the object was varied from (a) 20%, (b) 40%, (c) 60%, and (d) 80% of the densest packing diameter (DPD) of the 

particles. The motion is shown after approximately 3,000 expansion-contraction cycles. The scale bar represents 3 m. 

 

A study of signal/sensor noise effect was conducted with 10,000-particle robots as well, 

given that they exhibited minimum variability with different random configurations. The stimulus 

signal (light) was detected by the sensor and used to interpret relative position of the particle and 

calculate its phase delay. In this test, the effect of varying the sensor noise for estimating incident 

light was explored. The noise power was characterized by the effect it has on distance estimation 

as a percentage of minimum particle diameter. For each level, particle robots were simulated in 

eleven random initial configurations. Fig. S20 shows the effects of sensor accuracy on the 

locomotion of these loosely-coupled robots. When the standard deviation of distance estimation 

error was equivalent to the minimum diameter of one particle, the system speed declined by 33%, 

and a standard deviation exceeding two particle diameters resulted in a stationary robot. The 

shaded area represents one standard deviation of the speed data.  



 

Figure S20: Effects of distance estimation error on average speed of 10,000-particle robots. 

 

Lastly, Fig. S21 shows a simulation where “dead” particles are detached and new particles 

in the environment are annexed by the robot, increasing its size. It is evident that the overall speed 

and direction of the robot towards the light source does not change when doubling the number of 

particles. 

 

 

Figure S21:  Demonstration of a particle robot capabilities. Particle robot detaches from “dead” particles and 

annexes additional particles from the environment while demonstrating phototaxis and obstacle avoidance. 
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t = 48 min t = 80 mint = 64 min
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