

Figure 1: Spyndra printed in a camouflaged brick pattern

Abstract— This paper describes Spyndra, a quadruped

robot created as an open source platform for studying

machine self-awareness. Our key hypothesis is that a

machine is self-aware to the degree it can simulate itself,

and that self-simulation is essentially the ability to predict

sensations from actions. In order to facilitate studies in this

direction, we create the first of what we see as a series of

open platforms that provide rich proprioceptive feedback.

This paper provides descriptions of Spyndra’s hardware

and software and an analysis of two Inertial Measurement

Unit (IMU) datasets to illustrate Spyndra’s competency as

a machine learning platform. After establishing this, we

describe our methods to progress in machine learning, and

thus also include data from machine learning models, an

example simulation model, and a comparison between a

simulated gait and real gait that allow us to begin pushing

the boundaries towards what a machine can model of its

own actions. These series of information can serve as a

baseline for future studies.

I. INTRODUCTION

UESTIONS over the nature of self-awareness and

conscious-ness have occupied philosophers and

physicians for millennia. The relatively recent advent of

robotic systems, combined with machine learning

technologies, has opened a new window into these age old

questions. For the first time, some of the prevailing

conjectures or models can be put to a test.

The key hypothesis we aim to study is the idea that

consciousness, or self-awareness, is essentially the ability to

self-simulate, or to perform ‘mental time-travel,’ and that

emotions are essentially internal appraisals of that prediction.

A second aspect of our working hypothesis, is that

self-awareness is not a black-or-white characteristic that

creatures either possess or not. Alternatively, self-awareness

lies on a continuum from machines with no self-awareness to

human-level self-awareness, and beyond. If true, this

hypothesis implies that we can begin experimenting with

systems that might possess minute amounts of self-awareness.
Spyndra is a robotic platform that could potentially be

capable of a small level of self-awareness. Utilizing min-imal

proprioceptive sensation to track its internal motor commands

and record its own orientation and acceleration, Spyndra can

learn about its physical form. We hope that by sharing this

platform and data produced by it, researchers engaged in this

line of research can study self-awareness on a common

platform.

Growth within the robotics field has traditionally been

limited by barriers to entry such as expensive components and

complex, inaccessible manufacturing. By contrast, Spyndra

was designed as an open source platform, using off-the-shelf

electronics and 3D printed, easily-assembled hard-ware, with

all necessary files and instructions available on the project’s

website. Table 1 provides a comparison of similar low cost

walking robots, both academic and hobby in origin. Spyndra is

comparable in price to these alternatives, at approximately

$600 to build and operate. Furthermore, by limiting the DOF

to eight, Spyndra reduces the complexity of potential gaits,

making machine learning a more computationally tractable

problem. Calibration procedures designed specifically for the

robot ensure synchronicity be-tween software and hardware

and the repeatability of experiments. We have also developed

control software for Spyndra, allowing gaits generated

through machine learning to be seamlessly commanded to the

robot, as well as a dataset of IMU readings that can serve as a

baseline for further re-search. Though this paper presents

Spyndra in its first version, the public availability of native

files, including Python scripts and CAD files, allows for

crowd-sourced customization and improvement of the system

as it is adopted.

Spyndra 1.0: An Open-Source Proprioceptive Robot for Studies in

Machine Self-Awareness

Ori Kedar1, Christie Capper1, Yan-Song Chen1, Zhaoyang Chen1, Julia Di1, Yonah Elzora1, Lingjian Kong1,
Yuanxia Lee1, Julian Oks1 Jorge Orbay1, Fabian Stute1, Chad Tarpley1, Joni Mici1, and Hod Lipson1

Q

Department of Mechanical Engineering, Columbia University in the City of New York

 Image Price Open-source

hardware

Sensors “DoF” # & type

Spyndra[12]

$575 Yes: provides

STL and CAD

IMU - 1, camera 8 - rotary

Instructables

Arduino

Quadruped [13]

$540 Yes Triple axis

accelerometer

12 - rotary

RobotShop

Lynxmotion SQ3U

Symmetric

Quadruped Walking

Robot

[14]

$550 No: assembly

kit

Not listed 12 - rotary

Instructables

Spider Robot

[15]

~$100 Yes: provides

STLs, not CAD

Not listed 12 – rotary

A 3D Printed

Quadruped Robot

(Instructables

~$450 Yes: provides

STLs and CAD

Not listed 12 – rotary

Aracna [17]

$1,350 Yes: provides

STL and CAD

Not listed 8 – rotary

Hexy –

Programmable

Hexapod Kit [20]

$250 Yes: provides

Code, Laser

Cutter

DXF/STL/CA

D files

Ultrasonic Distance

Sensor

18 - rotary

Lynxmotion A-Pot

Hexapod [19]

$1499

(No electronics)

No: assembly

kit

Force Sensors 18 - rotary

TABLE 1: COMPARISON OF SPYNDRA TO SOME OTHER WALKING ROBOTS LESS THAN $1,500

http://www.creativemachineslab.com/spyndra.html
http://www.instructables.com/id/Synopsis/
http://www.instructables.com/id/Synopsis/
http://www.robotshop.com/en/lynxmotion-sq3u-symmetric-quadruped-walking-robot.html?gclid=EAIaIQobChMI34_tkIX80gIVBwNpCh19jQC3EAYYASABEgLHPPD_BwE
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
http://www.pnas.org/content/108/4/1234.abstract

II. HARDWARE

The hardware strikes a balance between being

user-friendly to a wide audience and sophisticated enough to

achieve a wide variety of tasks. The website includes a bill of

materials, all native CAD and STL files, and instructions on

how to fabricate and assemble the hardware, integrate the

electronics, and implement the software. Spyndra’s sensor

systems include a camera and an Inertial Measurement Unit

(IMU). These sensors provide information necessary for

Spyndra to develop a model of itself and interact with its

environment. The hardware can be customized to

accommodate additional sensors.

For convention, this paper will refer to the upper section of

each leg as the ‘Femur,’ and the lower section as the ‘Tibia’ as

illustrated in Figure 2. A central chassis holds the Raspberry Pi

3B micro-controller, Lithium-ion battery (power source of the

controller), and a Lithium polymer battery (power source for

the servo motors), as well as several sensors. The chassis also

houses four servos linked to the femur.

Unlike Spyndra’s Creative Machines Lab predecessor,

Aracna, the eight high-torque metal gear analog servo motors

(Power HD 1501MG) directly drive each joint of the robot [5].

The two-pronged femurs support both sides of the motors to

prevent load paths orthogonal to the motors intended axis of

motion. Adhering to this design principle maximizes servo life

and improves Spyndra’s overall robust-ness. The motors slide

effortlessly into place in both the chassis and tibia, and are

connected to the femur using standard servo horns. This direct

drive, as opposed to Aracna’s linkage system, results in low

friction/low hysteresis motion that can be more accurately

represented in simulation.

Spyndra is comprised of entirely 3D-printed parts, with all

necessary STL files available on the project’s website. The

parts are nominally designed and tested for fabrication via

Fused Filament Fabrication [9] using typically low cost

desktop 3D printers (Ultimaker 2 Extended+) which enables

the design of topologically complex bio-inspired parts.

Figure 2: Labeled and dimensioned drawing of Spyndra

The recommended materials are Polylactic Acid (PLA)

and ABS plastics, which are inexpensive and allow for the

simple application of heat-inserts for fastening. We also

fabricated Spyndra models using a Stratsys J750 printer which

uses PolyJet technology [9] to achieve full color and

multi-material printing, as shown in Figure 1. The organic

textures on these experimental models challenge the metallic

motif which we have come to accept for modern day robots

such as BigDog.

Various 3D printer settings, including wall-thickness, infill

density, and layer deposition orientation, have been iteratively

tested. Hardware failure was initially a recurrent issue with

repeated use, however incidences of fracture have been

reduced, almost to entirety, through minor design revisions

and enhanced printer settings. Optimized settings and print

orientations for Ultimaker 2.0 3D printers can be found on the

project website.

Designed for ease of assembly, the components are either

pressfit or fastened using screws and heat-set inserts. No

adhesives are needed in the assembly of Spyndra. The only

tools necessary to assemble Spyndra are a few screw-drivers

and a soldering iron.

Powered by two batteries, Spyndra can function as an

untethered robot. The Raspberry Pi 3 can either be

programmed to execute autonomous programs upon booting,

or receive commands wirelessly via USB, Bluetooth, or SSH

protocol. Spyndra’s present design can run for approximately

twenty minutes on one charge, but extra Lithium polymer

batteries for the servo motors can be added to in-crease

lifespan.

Spyndra costs around $600 to build and operate. The price

breakdown can be seen in Table 3. If printed with

recommended settings using PLA filament, Spyndra weighs

1.55kg. However, further lightweighting and cost reduction

can be accomplished by reducing infill settings, using lower

torque motors, and higher strength printing materials. These

changes may come at the expense of component robustness

and lifespan.

3D Printing Materials $70

Controller Raspberry Pi 3 + Adafruit

 Servo Hat:

 $55

Motors 8 x Power HD 1501MG:

 $160

Batteries Li-Ion, LiPo, Battery

 Charger, Voltage Regula-

 tor: $115

Sensors BNO055 IMU, Camera:

 $75

Misc. Electronics and

Fasteners $120

Table 3: Cost breakdown of Spyndra

To minimize mass, Spyndra uses a small Raspberry

Pi-compatible camera. The camera interfaces with Spyndra’s

software by using the Raspicam commands native to the

Raspberry Pi. The visual information from the camera,

cou-pled with deep learning networks, offer a multitude of

capa-bilities, including object recognition and the ability to

obtain depth information. The camera has so far been used for

http://www.creativemachineslab.com/spyndra.html
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page3
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page4

im-age recognition, with the ultimate aim of finding

waypoints for path planning.
Adafruit’s BNO055 is the Inertial Measurement Unit (IMU)

used for measurements of acceleration, rotation, and magnetic

orientation each along three dimensions and pro-vides primary

feedback for gait generation. Using integra-tion, the IMU can

provide a variety of information about Spyndra’s physical

state, such as its position, velocity, and acceleration. Since the

Spyndra architecture exhibits two-way symmetry, the IMU is

placed in the geometric center of the chassis so it collects the

most inertially relevant data. The output from the IMU can be

used to train Spyndra’s algorithms to improve its ability to

learn to walk.

III. GAIT GENERATION SOFTWARE

Spyndra’s software suite currently consists three spline

generation scripts and two runner scripts. The first spline

generator is a random spline generator, which creates two

random arrays of five points each, one array corresponding to

femur position, and the other tibia position. The generator then

fits the arrays to splines, and outputs a large array of

percentages to be mapped to motor angles, see Figure 4. The

five auto generated points are also tested for high deviation,

and points too far away from each other are re-generated to

avoid erratic movements which can damage the servo motors.

This process results in a “random gait,” which will be realized

on the hardware using a runner script. The second spline

generator produces what we call a “standing gait.” It works

similarly to the first but always produces the same motor

angles, in which Spyndra has no translational movement, but

only gyrates the chassis. This gait is meant for IMU calibration

and testing. The third spline generator produces a “manual

gait.” The user inputs the desired number of motor coordinates

for Spyndra’s femur and tibia joints, and the generator fits

these motor coordinates to a spline which is then outputted as

an array of motor angles. For all three gait generators, the user

can decide the number of times the spline is repeated.

The first runner script takes the output of any of the three

generators and parses the splines, with each leg running the

same spline. First, the program prompts the user for the

desired phase offset, which is the amount of lag between legs

as they run the spline. The spline, which consists of an array of

percentages, is then mapped to the appropriate maximum and

minimum motor angles (interpreted as PWM signals) which

are referenced from a calibration log file. The PWM signals

are sent to the servo motors while the IMU data is logged in a

separate file. The second runner script is identical to the first,

but accepts a time offset between legs, as opposed to a phase

angle.

Before executing the gait, both runner scripts first slowly

move Spyndra to a standing position with the femurs parallel

and the tibias perpendicular to the robot’s chassis. Once

Spyndra is standing, the designated spline runs for the de-sired

amount of loops. Finally, once the spline has finished running,

Spyndra is moved to a sitting position where the tibia and

femur are outstretched and the robot is resting on its chassis.

Upon completion, any random gait generated has the option to

be saved to a log file if desired.

(a)

(b)

Figure 4: Random points generated for gait are (a) fit to spline,

then (b) the spline is sampled to produce the gait.

IV. CALIBRATION

To ensure the repeatability of gaits, proper calibration of

Spyndra is key. When properly calibrated, all four of

Spyndra’s legs will go to the same physical position when

given the same PWM command, as illustrated in Figure 5. The

robot consists of 8 servo motor actuators that are connected to

the legs using servo horns (as discussed in Section :

Hardware). The servos have a travel limit of roughly 165

degrees, and the horns must be attached in the proper

orientation. To ensure that all limbs are properly calibrated,

we have engineered a combined mechanical and software

approach. First, the motors are unplugged and shifted all the

way back to the maximum angle (counter clockwise for tibia,

clockwise for femur). A mechanical jig is then placed and used

to attach the horn to each legs servo motor as shown in Figure

6. This provides a rough calibration, but the coupling

mechanism of the horn limits the precision of each legs

orientation to within 14 degrees.

file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5

Figure 5: Range of motion of tibia and femur with

corresponding PWM signals

Figure 6: The 3D printed mechanical jig (grey) is placed

on the motor and guides the coupling of the servo horn (black)

to the proper orientation.

Second, to further refine Spyndra’s leg calibration, we lay

Spyndra on a flat surface and raise its femurs and tibias to their

maximum positions. Then, one at a time, each femur is

lowered until it touches the flat surface. The angle at which

contact occurs is recorded for each individual femur, and these

angles are used to define the range of motion of each femur.

The femurs are then raised ten degrees above con-tact, and the

same process is done for the tibias. The lowest increment of

angle is about 0.4 degrees, so all the legs are calibrated within

0.4 degrees of each other. This allows users to design gaits that

can treat each leg as equivalent to the others. Figure 7

demonstrates this process.

V. IMU DATASET

To demonstrate Spyndra’s suitability as a robotic gait

machine learning platform, we wanted to ensure that our data

is replicable by first taking two datasets using IMU

measurements. These datasets demonstrate the repeatability of

measurements and can serve as a baseline for future gait

studies.

Both datasets consist of time, yaw, pitch, roll,

x-acceleration, y-acceleration, and z-acceleration data from

Spyndra. In the first, Spyndra performs the “standing gait”

(described in the Section: Gait Generation Software), with a

phase offset of 45 degrees. In this “standing gait,” Spyndra

slowly gyrates the chassis while standing stationary.phase

offset of 90 degrees. In this “standing gait Spyndra slowly

gyrates the chassis while standing stationary.

The second dataset was recorded as Spyndra performed a

stored randomly generated “walking gait,” with the pattern

shown in Figure 4a. A phase offset of 45 degrees was used

between legs. As friction of the walking surface affects

Spyndra’s gait, it is important to note that the experiment was

conducted on a linoleum floor. The first dataset includes data

from 8 runs while the second dataset includes data from 14

runs.

The sequence for each

leg starts with the

Spyndra on a flat

surface. The femur

and tibia are raised to

The femur is lowered

until it touches the flat

surface at its lowest

point. The PWM

period of this point is

recorded

The femur’s position

is raised twelve

degrees from the

position of contact.

Now, the tibia is

lowered until it

touches the flat

sur-face at its lowest

point. The PWM

Figure 7: The calibration sequence for a single leg

file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page6
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page6

Figure 8: A frame by frame illustration of Spyndra’s “walking gait” measured for IMU dataset. Camera position is

fixed

Figure 9: IMU data plotted against time. Gyroscopic data in degrees, acceleration data in m=s2

(a) Standing (b) Walking

Figure 10: Illustration of the “walking gait” performed by

Spyndra for data collection. An offset of 45 degrees was used

between legs.

For both experiments, standard hardware was used, and

Spyndra’s motors were powered by the LiPo battery so it

could move untethered. The raw data can be found on the

Spyndra website as well as the Python script used to process it.

Data processing included filtering of anomalous high and low

values, use of a median filter to remove sharp spikes in data,

and normalizing of data to account for differences in initial

orientation.

 Standing Walking

Correlatio

n

STD Correlatio

n

STD

Yaw 0.8746 1.3201 0.3896 6.5146

Pitch 0.9664 1.6955 0.9263 3.6387

Roll 0.9582 1.0643 0.8124 1.9879

X 0.8209 0.2881 0.8063 0.7994

Y 0.8746 0.1849 0.8403 0.3191

Z 0.9840 0.0420 0.5062 11.4575

TABLE 4: DISTRIBUTION OF CORRELATION COEFFICIENTS OF

IMU DATA ACROSS REPETITIONS

VI. MACHINE LEARNING

In order to achieve self-awareness, we set up two

problems: global movement prediction and IMU prediction.

The global movement problem aims at predicting the distance,

direction and orientation by the 5 random interpolate points

for femur and tibia as input features. This problem is important

for path planning. Given a high-level route, the robot should

be able to generate the appropriate gait to follow such a route.

Figure 11: Definition of Global Measurements

Figure 12: Definition of Global Prediction Problem

 Linear Regression Ridge Regression

Training

MSE

Testing

MSE

Training

MSE

Testing

MSE

Distance 353.04 1315.17 371.45 1019.92

Direction 1.31 9.17 1.44 6.62

Orientation 0.0026038 0.031480 0.027071 0.019467

Table 5: Evaluation of Global Prediction

We used two baseline models to predict robot motion:

linear regression and ridge regression. The mean square errors

of both methods are shown in Table 5.

One example of our prediction testing is shown in Figure

13. Neither the linear regression nor the ridge regression

predicted the global measurement precisely. Since the

direction and the orientation are related to yaw, and yaw is the

least repeatable feature, it is likely that the direction and the

orientation are hard to predict as well.

Figure 13: Global Prediction (red: ground truth, blue: linear

regression, green: ridge regression)

IMU prediction, on the other hand, deals with the problem

of predicting the current state (yaw, pitch and roll) and

acceleration based on motor commands and previous IMU

measurements. A motor command consists of 8 motor angles,

and an IMU measurement consists of yaw, pitch, roll and

x-y-z acceleration. This kind of self-awareness focuses on

how the actions of the robot interact with itself and the

environment. For example, the trained model should be able to

adapt to either a slippery ground or a tilted surface ideally,

depending on the motor command (action) and IMU

measurement (environmental feedback).

Because a gait is a time-dependent motion, it is likely that

the robot’s previous time-step is as important as motor

commands. Hence, we merged the motor command and IMU

measurements from previous the time-steps as input features.

The architecture of our neural network is shown in Figure 14.

Figure 14: Architecture of fully-connect neural networks

To experiment with different neural networks, 14 random

walks were used for training and 4 other random walks were

used for testing. We compared the performance of using one,

two and three time-steps of information and listed the results

in Table 6.

 MSE Avg. Correlation Coef.

Training Testing Training Testing

Current

step

1.0538 1.0115 N/A N/A

1 step 0.2115 0.4334 0.9096 0.8088

2 step 0.1905 0.2691 0.9236 0.8863

3 step 0.1876 0.3384 0.9354 0.8310

Table 6: Evaluation of IMU Prediction

It was observed that the neural networks failed to make

meaningful predictions without previous commands and

measurements. This fact verifies our assumption that the state

of the robot depends on the robot’s previous state.

 (a) (b)

 (c) (d)

Figure 15: Ground truth (blue) and prediction (orange) of pitch

of (a) without previous step features (b) 1 step model (c) 2 step

model (d) 3 step model.

Although the third order model achieved the lowest mean

squared error and highest correlation in training phase, the

second order model did better in testing phase. One possibility

is that the neural networks began to overfit the training dataset

after introducing features from 3 time-steps before. In this

case, adding more training data may alleviate the overfitting

issue. Another possibility is that 2 time-steps is the optimal

feature set for our purpose.

VII. SIMULATION MODEL

In order to acquire the best feature set, we need a larger

dataset to rule out the possibility of overfitting. We were also

aware that data collection is a time-consuming process. This

motivates us to build a model that generates IMU

measurement based in a simulation environment. With a

simulation model, we are able to generate training data

quickly and hence accelerate the development process. Plus,

we can experiment with different sensors which we do not

have in the real world. For instance, the global data was

measured manually, because Spyndra does not have any

localizing sensor. In ROS, however, we can obtain the

position with lines of code.

Our first model was built on Adams, a popular software for

calculating vehicle dynamics. However, Adams had some

limitations when we applied it to simulate Spyndra. The servo

motor of Spyndra has a built-in closed-loop controller to deal

with the error. Even if it is able to calculate the acceleration

and pose of the robot, it does not account for the error between

the actual motion and command. Moreover, its integration to

other software is limited. We could only simulate through its

graphical user interface, which makes it hard to automate the

process of data collection.

Such limitations led us to choose the Robotics Operating

System (ROS) and Gazebo as our new simulation tool. ROS

provides comprehensive libraries, software and tools for

general robot platforms. With ROS, we have every component

just like the physical robot. We used its proportional–integral–

derivative (PID) controller to mimic the behavior of the servo

motors. ROS also provides an IMU sensor plugin with which

we can generate IMU measurements.

For simplicity, we modeled Spyndra with simple blocks

and cylinders as shown in Figure 8. We also specified the

dynamic properties such as moment of inertia and mass. After

setting up the robot description, the physics engine of Gazebo

simulated the motion of given motor commands.

Figure 16: Simplified model description

Figure 17 – Software framework of Spyndra

In order to validate the simulated IMU data, we wrote a

program that takes in a past walk, simulates it and compares

IMU measurements. The normalized data of a simulated

standing gait and walking gait are presented in Figure 8. It can

be observed that acceleration of x, y direction have a higher

correlation, which corresponds to higher repeatability.

There are two reasons for such divergence between the

simulation and reality. One reason is that the simulation model

assumes that the material is homogeneous, whereas the robot

has a hollowed structure due to 3D printing. The center of

mass (COF), as a result, might be skewed to a side. Since the

walking is highly related to translation of center of mass, it is

not surprising such skewed COF affects the pose of Spyndra.

Another factor is the quality of the physics engine. During the

simulation, the legs of the model were sometimes shaking

because the physics engine did not handle the computation

well. This introduced extra perturbation to the simulated IMU

data.

Even though the simulation has noticeable differences to

the real data, it is an effective way of generating various

training data. The gait does not necessarily have to be spline

functions. It can be either simple sinusoidal waves or Gaussian

processes. The simulation model allows us to parallel the

processes of collecting data on the physical robot and develop

machine learning algorithm. Therefore, we wrote a

programming interface to ensure that the application applies to

both simulation and physical experiments. The planned

software framework is shown in Figure 17.

 (a) (b)

Figure 18: ground truth (blue) and simulation (orange) of (a) standing gait (b) walking gait

VIII. CONCLUSION

We have introduced Spyndra: an open source quadruped

robot meant to serve as a platform for robotics and AI

re-searchers interested in self-awareness. Comprised of

3D-printed parts and off-the-shelf hardware, Spyndra is

inexpensive, easy to assemble, yet achieves complex

kinematics. We have also constructed a few basic machine

learning models to begin allowing Spyndra to create its

self-model; these machine learning models are also

compatible with both Spyndra’s hardware and the simulated

version for better data acquisition. To aid in the

implementation of machine learning for others, open source

control software, a set of baseline IMU data, machine learning

code, and simulation files are available for future researchers.

These materials make Spyndra ideal for hardware

implementation of machine learning and self-modelling

software, and we hope it will serve as a common starting point

among roboticists, academics, and the broader AI community.

In the future, we would like to strengthen Spyndra’s

capabilities as a self-modeling platform by increasing the

feed-back sensors on board using the features we extract from

our simulation. With additional proprioceptive sensors,

Spyndra can learn more about itself. In addition, we will

collect more data from the IMU, growing the publicly

available dataset, and continue enhancing our current machine

learning models.

IX. ACKNOWLEDGEMENT

This work has been supported in part by a gift from

Northrop Grumman Incorporated, for the study of self-aware

systems.

REFERENCES

[1] Bongard J., Zykov V, Lipson H. (2006). “Resilient machines through

continuous self-modeling.” Science, 314(5802):1118-21.

[2] Hornby, G., Takamura, S., Yamamoto, T., and Fu-jita, M. (2005).

Autonomous evolution of dynamic gaits with two quadruped robots.

IEEE Transactions on Robotics, 21(3):402410.

[3] Koza, J. (2003). Genetic programming IV: Routine hu-man competitive

machine intelligence. Kluwer.

[4] Lipson, H. and Pollack, J. (2000). Automatic de-sign and manufacture

of robotic lifeforms. Nature, 406(6799):974978.

[5] Lohmann, Sara, Jason Yosinski, Eric Gold, Jeff Clune, Jeremy Blum,

and Hod Lipson. “Aracna: An Open-Source Quadruped Platform for

Evolutionary Robotics.” Artificial Life 13 (2012): n. pag. Web.

[6] Mnih, V. et al. Human-level control through deep rein-forcement

learning. Nature 518, 529533 (2015).

[7] Nolfi, S. and Floreano, D. (2000). Evolutionary robotics: The biology,

intelligence, and technology of self-organizing machines. MIT Press,

Cambridge, MA.Pfeifer, R., Bongard, J., and Grand, S. (2007). How

the body shapes the way we think: a new view of intelli-gence. The
MIT Press.

[8] Pfeifer, R., Bongard, J., and Grand, S. (2007). How the body shapes the

way we think: a new view of intelli-gence. The MIT Press.

[9] Standard, A. S. T. M. “F2792. 2012 Standard ter-minology for additive

manufacturing technologies.” West Conshohocken, PA: ASTM

International. doi: 10.1520/F2792-12

[10] Sims, K. (1994). Evolving 3D morphology and behavior by

competition. Artificial Life, 1(4):353-372

[11] Yosinski J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., and Lipson,

H. (2011). Evolving robot gaits in hard-ware: the hyperneat generative

encoding vs. parameter optimization. In Proceedings of the European

Confer-ence on Artificial Life, pages 890-897

[12] Spyndra [Online] Creative Machines Lab Columbia University

[Online]. Available

http://www.creativemachineslab.com/spyndra.html [7 Apr 2017]

[13] Hend, D Arduino Quadruped Robot Instructables. [Online]. Available:

http://www.instructables.com/id/Symnopsis/[7 Apr. 2017]

[14] Lynxmotion SQ3U Walking Robot Lynxmotion. [Online]. Available:

http://www.lynxmotion.com/c-26-quadrapods.aspx [7 Apr. 2017]

[15] Hsu, R[DIY] Spider Robot(Quad Robot, Quadruped) Instructables

[Online]

http://www.instructables.com/id/DIY-Spider-RobotQuad-robot-Quadr

uped/[7 Apr. 2017]

[16] Hatfield, S.A 3D Printed Quadruped Robot Instructa-bles. [Online].

http://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/[7

Apr. 2017]

[17] AracnaCreativeMachinesLab-Columbia University.

[Online].Available:

http://www.creativemachineslab.com/aracna-robot.html [7 Apr. 2017]

[18] Bongard, J. Starfish Mechanical and Aerospace Engineering - Cornell

University. [Online]. Available:

http://www.pnas.org/content/108/4/1234.abstract [7 Apr. 2017]

[19] Lynxmotion A-Pot Hexapod Lynxmotion [Online]. Available:

http://www.robotshop.com/en/lynxmotion-a-pod-hexapod-robot-kit-n

o-electronics.htmlSpecifications [15 Apr. 2017]

[20] Hexy-Programmable Hexapod Kit Adafruit. [Online]. Available:

https://www.adafruit.com/product/1529 [15 Apr. 2017]

http://www.creativemachineslab.com/spyndra.html%20%5b7
http://www.instructables.com/id/Symnopsis/%5b7
http://www.lynxmotion.com/c-26-quadrapods.aspx%20%5b7
http://www.instructables.com/id/DIY-Spider-RobotQuad-robot-Quadruped/%5b7
http://www.instructables.com/id/DIY-Spider-RobotQuad-robot-Quadruped/%5b7
http://www.creativemachineslab.com/aracna-robot.html%20%5b7
http://www.robotshop.com/en/lynxmotion-a-pod-hexapod-robot-kit-no-electronics.htmlSpecifications%20%5b15
http://www.robotshop.com/en/lynxmotion-a-pod-hexapod-robot-kit-no-electronics.htmlSpecifications%20%5b15
https://www.adafruit.com/product/1529%20%5b15

