Creative Machines Lab - Columbia University
  • Home
  • About
  • People
  • Research
    • Hidden Variables
    • Visual Self Modeling
    • Label Representations
    • Robot Visual Behavior Modeling
    • Particle Robotics
    • Deep Self Modeling
    • Evolutionary Self Modeling
    • Self Replication
    • Laser Cooking
    • Digital Food
    • Soft Actuator
    • Layered Assembly
    • Cellular Machines
    • Inverted Laser Sintering
    • Eureqa
    • Golem
    • Data Smashing
    • Jamming Gripper
    • Soft Robot Evolution
    • Truss Reconfiguration
    • Fluidic Assembly
    • Ornithopters
    • Tensegrity
  • Papers
    • Selected Papers
    • All Papers
  • Videos
  • Talks
  • Open Source
    • Titan Library
    • Fab@Home
    • FreeLoader
    • VoxCad
    • Spyndra
    • PARA
    • Aracna Robot
    • Cuneiforms
    • Eva
    • AMF
  • Join Us
  • Internal
    • Wiki
    • Email list
  • Contact
  • Home
  • About
  • People
  • Research
    • Hidden Variables
    • Visual Self Modeling
    • Label Representations
    • Robot Visual Behavior Modeling
    • Particle Robotics
    • Deep Self Modeling
    • Evolutionary Self Modeling
    • Self Replication
    • Laser Cooking
    • Digital Food
    • Soft Actuator
    • Layered Assembly
    • Cellular Machines
    • Inverted Laser Sintering
    • Eureqa
    • Golem
    • Data Smashing
    • Jamming Gripper
    • Soft Robot Evolution
    • Truss Reconfiguration
    • Fluidic Assembly
    • Ornithopters
    • Tensegrity
  • Papers
    • Selected Papers
    • All Papers
  • Videos
  • Talks
  • Open Source
    • Titan Library
    • Fab@Home
    • FreeLoader
    • VoxCad
    • Spyndra
    • PARA
    • Aracna Robot
    • Cuneiforms
    • Eva
    • AMF
  • Join Us
  • Internal
    • Wiki
    • Email list
  • Contact
Creative Machines Lab - Columbia University

Spyndra Assembly Instructions

​aSSEMBLE THe BASE

  • ​ABC

2. Assemble Tibia with Femur 

  • Insert Low-Friction Sleeve Bearing into Femur
  • Slide secured Servo Arm into Femur
  • Secure Tibia with Shoulder Bolt
  • Repeat for all 4 Tibias and Femurs

Assemble Chassis with Electronics & Legs

3. Place Heat Inserts & Magnets into Chassis

  • 4 large heat inserts into Chassis side using soldering iron
  • 4 large heat inserts into Tibia side 
  • 4 small heat inserts into Chassis body for Raspberry Pi
  • 2 small heat inserts for Battery Charger
  • Glue Chassis magnets to secure connection with Spyndra Top

4. Assemble Chassis With Motors & Legs

  • ​Insert 4 Motors into Chassis
  • Secure Motors into Chassis with 2 Screws for each Motor
  • Pressfit Servo Arm onto Motor
    • Perform same clocking procedure to ensure femur has desired range of motion

5. Assemble Electronics Onto Chassis

  • Assemble Charger
    • Solder black wire into ground, make sure other end of wire is female
    • Solder red wire into +5V, make sure other end of wire is male
    • Screw charger into chassis
  • Solder Arduino Hat
    • Solder GPIO adapter pins to Arduino Hat to plug into Raspberry Pi
    • Solder motor header pins to Arduino Hat for motors to plug in
    • Solder capacitor into center (check polarity)
    • Solder blue terminal block into ground and 5V 
    • Solder pins for SDA and SCL ports (top right corner)
  • Place tape on Raspberry Pi to prevent short-circuiting
  • Connecting Electronics to Chassis
    • Screw in Battery Charger
    • Screw in Raspberry Pi
    • Attach Arduino Hat to Raspberry Pi​

6. Plugging in Motors & Batteries

  • Plug each Motor into Arduino hat
  • Place Battery into Chassis
Picture